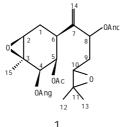
A New Sesquiterpene from Ligularia Songarica


Bo FU, Xiu Ping YANG, Jie WANG, Zhong Jian JIA*

Institute of Organic Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000

Abstract: A new bisabolane sesquiterpene, 5β - acetoxy - 4β , 8- diangeloyloxy - 2β , 3β , :10, 11diepoxy-bisabola-7 (14)-ene, was isolated from the roots of *Ligularia songarica* and its structure was elucidated on the basis of spectroscopic methods, especially 2D-NMR techniques.

Keywords: Bisabolane; new sesquiterpene; ligularia songarica.

The chemical studies of *Ligularia songarica* have not been reported till now. In our preliminary study on the roots of this plant, a new bisabolane sesquiterpene was obtained and its structure was identified as 5β -acetoxy- 4β , 8-diangeloyloxy- 2β , 3β , : 10, 11-diepoxy-bisabola-7 (14)-ene **1**.

Compound 1, colorless needles, m.p. 90-90.5°C; $[\alpha]_D^{25}$ -17.6 (c 0.5, CHCl₃). Its FAB-MS showed a quasi-molecular ion at m/z=491: $[M+H]^+$, together with elemental analysis suggested the molecular formula to be $C_{27}H_{38}O_8$ with nine unsaturation confirmed by the ¹H-NMR and ¹³C-NMR (**Table 1**). IR (cm⁻¹) showed carbonyl groups at 1744 (OAc), 1717 (C=CCO₂R), double bond at 1650 (C=C) and 857 (C=CH₂). The FAB-MS exhibited main fragments at m/z: 391 (M⁺+H-AngOH), 291 (M⁺+H-2×AngOH), 231 (291-AcOH), 83 (C₄H₇CO⁺), this indicated the presence of two angeloyl groups and an acetyl group which was supported by the ¹H-NMR and ¹³C-NMR (**Table 1**). Except for the three ester groups, the ¹H-NMR spectra exhibited a terminal methylene, three methyls, two methylenes and six methines (five oxygenated). The ¹³C-NMR and DEPT spectra also indicated that there were 15 skeleton carbons (3× CH₃, 3× CH₂, 6×CH, 3×C). Therefore, the compound **1** was confirmed as bisabolane sesquiterpene type^{1, 2, 3}. In the HMBC experiment of **1**, the correlations of H-5 with δ_C 170.1 (OAc), C-3, C-4, C-6 and C-1; H-4 with δ_C 166.7 (OAng), C-5, C-3 and C-6; H-8 with δ_C 166.7 (OAng), C-7, C-14, C-10, C-9

Bo FU et al.

and C-6 pointed to the acetyl group at C-5 and the two angeloyl groups at C-4 and C-8. The correlations of H-2 with C-3, C-6, C-1 and C-15; H-10 with C-8, C-9, C-12 and C-13 indicated two epoxy groups at C-2, C-3 and C-10, C-11, respectively. The relative stereochemistry of **1** was deduced by the coupling constants ($J_{1\alpha, 2\alpha}$ =5.2, $J_{4\alpha, 5\alpha}$ =4.8, $J_{5\alpha, 6\alpha}$ =2.4, $J_{6\alpha, 1\alpha}$ =4.0, $J_{6\alpha, 1\beta}$ =12.5, Hz) and the ¹H-¹H NOESY experiment. At first, if H-6 were α -oriented, in the NOESY spectra, the obviously correlated peaks of H-2 with H-1 α , H-15; H-4 with H-5, H-15 and H-5 with H-6 revealed that the ester groups at C-4 and C-5 must be all β -configuration and the epoxy group must be 2 β , 3 β -configuration. Thus, the structure of **1** was determined.

Table 1. ¹H (400MHz) and ¹³C-NMR (100MHz) data of Compound 1 (CDCl₃, δ, ppm, TMS)

	¹ H-NMR ^a	¹³ C-NMR	DEPT
1α	1.98 (1H, m)		
1β	2.17 (1H, dd, 15.2, 12.5)	25.7	CH_2
2	3.17 (1H, brd, 5.2)	59.5	CH
3	_	56.5	С
4	5.35 (1H, d, 4.8)	71.8	CH
5	5.30 (1H, br dd, 4.8, 2.4)	68.3	CH
6	2.45 (1H, dddd, 12.5, 4.0, 2.4)	37.9	CH
7	—	145.9	С
8	5.38 (1H, dd, 11.6, 2.2)	74.6	CH
9	2.02 (1H, m),		
9'	1.83 (1H, m)	33.4	CH_2
10	2.71 (1H, dd, 6.6, 5.2)	60.7	CH
11	_	58.1	С
12	1.26 (3H, s)	24.6	CH_3
13	1.26 (3H, s)	24.6	CH_3
14	5.23 (1H, brs)		
14'	5.04 (1H, brs)	115.4	CH_2
15	1.28 (3H, s)	18.9	CH_3
OAng	6.10, 6.06 (3'-H, qq, 7.6, 1.2),	166.6, 166.7, 127.2, 127.4	С
	1.98, 1.88 (4'-H, dq, 7.6, 1.5),	139.1, 139.2	CH
	1.95, 1.83 (5'-H, dq, 1.5, 1.2)	15.7, 19.5, 20.5, 20.8	CH_3
OAc	2.01 (3H, s)	170.1	С
		20.4	CH_3

a. Coupling constants in parentheses in Hz.

Acknowledgment

This work was surported by the National Natural Science Foundation and the Doctoral Program of the State Education Commission of People's Republic of China.

References

- 1. J. M. Cardoso, J. Jakupovic, F. Bohlmann, Phytochemistry, 1987, 26, 2321.
- 2. U. Ganzer, J. Jakupovic, F. Bohlmann, R. M. King, Phytochemistry, 1992, 31, 209.
- 3. F. Bohlmann, P. K. Mahanta, Phytochemistry, 1979, 18, 678.

Received 30 June 1998